August 7, 2019

More than ever, people want to work where and how they work best. Thanks to the evolution of technology, that means taking advantage of outdoor spaces as well—but of course, powering up al fresco comes with its own challenges. The need for reliable outdoor power is not only increasing in the workplace, but in hospitality and residential spaces too. Here, we’ll cover the rising demand for integrated power in outdoor spaces, regulatory issues surrounding these solutions, options for powering and their pros and cons.

THE OUTDOOR CULTURE SHIFT


From impromptu meetings to other informal interactions, many of today’s companies are leveraging a variety of workspace options to attract and retain employees. For most workers, productivity, engagement and overall satisfaction go up in a flexible work environment. Employees also tend to gravitate to casual spaces where food and drinks can be enjoyed. These spaces hold mobility at a premium—with laptops, tablets, and smartphones everywhere—and with mobile tech comes the demand for charging power.

For many employers, the demand for alternative workspaces has naturally led to outdoor work-friendly areas, with the ultimate goal being able to work as effectively outside as you would indoors. When polled, 86% of indoor workers say they’d like to spend more time outside during the workday and 82% welcome the concept of a dedicated outdoor workspace. Large companies like Apple and Facebook have understood the impact of this trend on employee loyalty, productivity, and recruitment for some time. In fact, their outdoor spaces have been carefully planned and designed around this movement.

The hospitality industry has also been increasing their efforts to expand and furnish outdoor spaces with comfortable seating, shading, and dependable charging options. Restaurant patrons are always looking for ways to charge their devices while visiting an establishment, and hotel guests have come to expect the same amenities in exterior spaces. Of course, movable tables and chairs are also an important way hotels and restaurants can support these environments.

While adding charging products to outdoor spaces does pose upfront costs, hotels are poised to see a healthy return on investment as guests tend to linger outside with increased food and drink purchases. According to Trip Info, “They’re staying longer at the pool, they’re eating more, they’re drinking more, so it’s actually turning into a good source of revenue for property owners.”

Apartment complexes are creating communal areas and co-working spaces for those who work remotely or from home. Outdoor spaces such as pool areas, rooftop decks and community centers are being equipped with WI-FI and easier access to outlets. Apartment buildings with shared outdoor spaces mean greater curb appeal and a more desirable living experience for potential renters—generating increased competition when compared to other complexes.

And when it comes to cost savings, traditional pronged-outlet energy use in communal living environments—like college campuses—can be reduced by providing gathering spaces with shared outdoor power access.

OUTDOOR POWER OPTIONS 


True outdoor power—with direct exposure to the elements—requires adherence to some pretty strict regulations.

OUTDOOR RECEPTACLES 

  • GFCI (ground-fault circuit-interrupter) protection is required for all outdoor receptacles. Specific exceptions may be made for snow-melting or deicing equipment. GFCI protection can include GFCI receptacles or GFCI circuit breakers.
  • Homes must have at least one outdoor receptacle at the front and rear of the house. They must be readily accessible from the ground and positioned no more than 6-1/2 feet above grade (ground level). Homes with attached decks and balconies with interior access (including a door to the indoors) must also have a receptacle no more than 6-1/2 feet above the deck or balcony walking surface. As a general recommendation, houses also should have a receptacle at each side of a deck or balcony, accessible from the ground.
  • Receptacles in damp locations (under protective covers, such as a porch roof) must be weather-resistant and have a weatherproof (sometimes called weather-tight) cover
  • Receptacles in wet locations (exposed to weather) must be weather-resistant and have a weatherproof “in-use” cover. This cover provides sealed weather protection even when cords are plugged into the receptacle.

OUTDOOR WIRING
The primary safety concerns with outdoor wiring are shielding against moisture and corrosion, preventing physical damage, such as run-ins with shovels, lawnmowers, and managing issues related to underground burial that could cause a bad short circuit. Outdoor wiring projects are generally classified into two categories: functional and decorative. Functional brings lighting to common areas such as stairs, gates, and walkways. Decorative adds design to exterior space such as highlighting trees and shrubs with lighting.

  • Exposed or buried wiring/cable must be listed for its application. Type UF cable is the most commonly used nonmetallic cable for residential outdoor wiring runs. UF cable can be direct-buried (without conduit) with a minimum of 24 inches of cover.
  • Wiring buried inside rigid metal (RMC) or intermediate metal (IMC) conduit must have at least 6 inches of earth cover; wiring in PVC conduit must have at least 18 inches of cover.
  • Backfill surrounding conduit or cables must be smooth granular material without rocks.
  • Low-voltage (no more than 30 volts) wiring must be buried at least 6 inches deep.
  • Buried wiring runs that transition from underground to above ground must be protected in conduit from the required cover depth or 18 inches (whichever is less) to its termination point above ground, or at least 8 feet above grade.

WATERPROOF CHARGING
When it comes to waterproofing your power devices, you have a couple options.

Waterproof USB’s are becoming a trend in the industry because it allows users to take their devices where ever they go. Creating a waterproof USB eliminates the environmental sensitivity aspect in powering up. USB Type-C’s are protected with rubber seal connectors which keep water out, so liquid is unable to provide an electrical path between hot, neutral and ground terminals. These connectors are rated for IPX6 water-ingression performance, meaning they are tested in continuous water immersion over 1 meter, allowing durability for the long haul.

Another option is to waterproof your circuit board. Rather than protecting the USB connector from water, the printed circuit board attached to the connector can be waterproofed. Doing this eliminates the chance of water damage to the electronics. This process is done by using a waterproof coating seal on the printed circuit board and all the components on the circuit board so water can’t get in and damage the product. However, if left out in the rain repeatedly, the products will at some point being to corrode. So, it’s recommended to store your devices inside when not in use.

BATTERY POWER
There are many reasons why battery power makes sense for powering your outdoor spaces.

Powering your object with batteries allow for a cordless option. Giving you mobility to navigate and position your outdoor spaces anyway you choose, without being tied down by a cord. Rechargeable batteries also offer a wide power bandwidth, which means they can handle both small and large loads with ease. They’re also seriously low maintenance—basic service includes cleaning the corrosion buildup on the outside of terminals and occasional performance checks. And when your battery runs out, simply recharge with a standard battery charger. Battery chargers can power a number of battery types and operate in various ways such as through a wall outlet, USB port or car port.

To read original, extended article, visit https://bobsbrain.com/power-lets-take-it-outside/

Byrne’s Outdoor Charging Solutions